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Abstract. Properties of nonlinear waves in one of the nonlinear partial differential equations are
investigated. The kinks with the solitonic, but unusual from the classic viewpoint, behaviour are
found. The equation itself does not possess the Painlevé property.

1. Introduction and preliminary

Since the discovery of soliton interaction by Zabusky and Kruskal [1] and the invention
of the inverse scattering transform (IST) by Gardneret al [2] at the end of the 1960s
nonlinear partial differential equations have been extensively studied in mathematics and
physics. Much effort has been made to understand their properties, and much progress has
been achieved up to now. However, in reality, only so-called integrable systems have been
investigated so far. A number of methods and structures are applicable and associated with
them: IST, B̈acklund transformations, master-symmetries, infinite hierarchies of conservation
laws, etc. Furthermore, though such systems usually imply some simplification, they do play
an important role in many applications from traditional hydrodynamics or optics to biology
and neurophysiology. For these reasons, the overwhelming majority of research work deals
with, namely, ‘integrable’ equations despite the fact that their behaviour is very similar, and
their main features (e.g., a phase shift or, say, a Hirota’s ansatz) are well known and widely
described in the literature.

In contrast, ‘nonintegrable’ models are a considerably less studied area of nonlinear
science. Any theory is still absent, and the remarkable fact is that they may differ radically. One
major surprise is the existence of systems with solutions and behaviour analogous to classical
solitonic cases [3,4], although these kind of waves (they were called ‘soliton structures’ in [5])
are very seldom realized in practice.

In this paper one more nonlinear partial differential equation is proposed and investigated
via both numerical and analytical techniques. The equation may arise as a model for the wave
processes in specific bubbly mediums [6]. It can be classified as a ‘nonintegrable’ one and
admits solutions in the form of kinks with special properties. These structures play an important
role in the system’s behaviour and can be generated from appropriate initial disturbances. They
are of solitonic features. To be precise, they elastically interact with other localized waves.
While, as a result of a collision between two such kinks, new kinks with other wavenumbers
and velocities are formed. In other words, after the interaction we not only have a phase
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shift, but also a change-over from one state to another. This switch always keeps the structure
itself, however. To our knowledge, this is the only equation with such properties, which could
be interpreted as ‘exchange interaction’. In this respect the results obtained here are very
important, because they conform with the view of the above-mentioned ‘soliton-structures’
proposed in [5,7,8].

This paper is organized as follows. First, the ground for the nonlinear equation is briefly
adduced. In doing so, the derivation mainly follows the same procedure as [9, 10], but takes
into account the additional assumptions relevant in our case. This is performed in section 2.
In section 3, the derived equation is investigated by means of the invariant singular manifold
approach from [11]. We start with a recapitulation of its theses and restrict the analysis to
a brief sketch. (An excellent survey is given in [12].) Section 4 is devoted to the computer
simulation for various initial data and a check of the properties of the kinks derived previously.
The paper ends with some discussion and remarks in the conclusion.

2. The physical model

In [6] the existence of peculiar submicrobubbles in aqueous electrolytes was theoretically
predicted, and a number of experimental data were presented, which could be treated as
the evidence. Such submicrobubbles are gaps in the fluid structure charged because of ion
hydration of the solution. Their diameter was estimated as 100–1000 Å. Here, we propose a
nonlinear equation for describing pressure waves in such hypothetical mediums. The derivation
mainly follows the same line as the preceding ones for traditional cases [9, 10], but some
assumptions valid for the above scales and situation are made.

For simplicity the plane flow and an incompressible viscous liquid are considered. In the
one-velocity approximation for the mixture, the hydrodynamic system takes the form

ρt + (ρu)x = 0 (1)

ρ(ut + uux) = −px + 4
3νuxx ν > 0 (2)

(ρ, u, p, ν are the density and velocity of the medium and the liquid pressure and viscosity,
respectively.) It is closed by the Rayleigh–Plesset equation for a bubble and by the expression
for the mean density

p +
2σ

R
+ ρl

(
RR̈ +

3

2
Ṙ2

)
+ 2ν

Ṙ

R
− q2

4πR4
= 0 σ > 0 (3)

ρ = ρl(1− 4
3πR

3n). (4)

Where the surface tension, bubble and liquid densities are denoted byσ , n andρl as well as
the bubble radius and charge byR andq. In our approach the gas pressure in the gap becomes
too small and is treated as negligible.

Next, let us introduce the new independent variables instead ofR andρ in (3) and (4) as
follows:

R = R0 + δ |δ| � R0� 1
ρ = ρ0 − aδ + o(δ) a = 4πR2

0nρl > 0.
(5)

Obviously,R0 andρ0 are the undisturbed bubble radius and mixture density. From equation (3)
one concludes

p = p0 − bδ − cδ̇ + o(δ). (6)
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(The dynamic terms are small enough in this case.) Herep0 (the undisturbed pressure),b and
c are used as abbreviations:

p0 = q2

4πR4
0

− 2σ

R0

b = q2

πR5
0

− 2σ

R2
0

c = 2ν

R0
> 0.

It can be easily checked thatb > 0 for physically relevant values ofp0 andR0, because the
expression for it is written down as

b = 3q2

4πR5
0

+
p0

R0
.

Substituting (5) into (1), in the lowest order one arrives at the equation

aρt − ρ0ux = 0. (7)

This is clear to be valid foru of order unity only for long enough waves. The latter confirms
the natural assumption that the characteristic length of the perturbation is much greater than
the distance between bubbles, and it is not possible to particularize their distribution. After
that, taking into account (5) and (6), and retaining the leading terms, equation (2) is replaced
by

ρ0(ut + uux) = bδx + cδtx + 4
3νuxx (8)

for u ∼ O(1), sufficiently long waves and the considerable viscosity.
One can eventually rearrange (7) and (8) into the system forδ

δt = ρ0

a
ux

δx = ρ0

b
(ut + uux)−

(
cρ0

ba
+

4ν

3b

)
uxx.

(9)

Moreover, its compatibility condition, after scaling as

u −→ ±2

(√
b

a

)
u

t −→ a

b

(
c

a
+

4ν

3ρ0

)
t

x −→ ±
√
a

b

(
c

a
+

4ν

3ρ0

)
x

to normalize the coefficients to unity, results in

utt − uxx + (u2)tx − utxx = 0. (10)

The latter equation is the subject of study in the following. We only need to add that since we
have two small parameters|δ| � R0 � 1, the next approximation should take into account
the dynamic terms from (3), so that

p = p0 − bδ − cδ̇ − dδ̈ + O(δ2) d = ρlR0 > 0.

As a result, the equation

utt − uxx + (u2)tx − utxx − εuttxx = o(ε) 0< ε � 1 (11)
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with

ε = db

a2
(
c
a

+ 4ν
3ρ0

)2

will be the perturbed version of (10).

3. The invariant Painlevé analysis and singular manifold equations

Although, as is now becoming clear, the Painlevé property (having poles as the only movable
singular point, i.e. whose location depends on the initial conditions) is neither sufficient nor
necessary for the integrability, and there are reasons for doubting its general validity (see [12,13]
and references therein), all the classical soliton equations possess it. And, thus, a negative result
may indicate another type of nonlinear dynamics for the system under consideration.

Acting in correspondence with the main scheme of the singular manifold method [12] and
using the representation of the invariant Painlevé analysis due to [11], one presentsu in (10)
as the power series expansion

u(x, t) =
+∞∑
i=−n

wi(x, t) · χi(x, t) n ∈ N. (12)

Wherewi are functions of the independent variables being determined in the recursive manner,
andχ obeys the Riccati equations

χx = 1 +
S

2
χ2 (13)

χt = −C +Cxχ − 1
2(CS +Cxx)χ

2 (14)

with the compatibility condition toS(x, t) andC(x, t)

St +Cxxx + 2SCx +CSx = 0. (15)

As was shown in [11], functionsχ = (
fx
f
− fxx

2fx
)−1, S = fxxx

fx
− 3

2(
fxx
fx
)2 andC = − ft

fx
are

naturally embedded into the original Painlevé analysis with the singular manifold function
f (x, t)

u(x, t) =
+∞∑
i=−n

Wi(x, t) · f i(x, t) n ∈ N.

In so doing, all arising relations can laconically be expressed in terms of them, and (13)–(15)
are just the identities.S is called the Schwarzian, andC has the dimension of a velocity. For
the simplest singular functionf = 1 + exp[k(x − vt)] (usually corresponding to kink/soliton
solutions) they are equal to−k2/2 andv respectively.

Return again to (12) and substitute it into our equation and then equate expressions at
different powers ofχ to zero. The leading term is seen to be−χ−1. There is no difficulty in
evaluating otherwi except at the resonancesi = 1, 2. In these cases, the following constraints
arise

Ct +CCx = 0(
2Cx − C ∂

∂x

)
(Ct +CCx) = 0

that merely indicates the weak Painlevé property.
The next step that we have to consider is truncation of (12) on the constant level

u = −χ−1 +
C2 − 1

2C
.
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It yields another set of equations

Ct +CCx = 0

C3Cxxxx + 2CCxx(3C
2Cx − 2Cx +C2S) + 2C2Cxxx

×(C2 + 1) + 2C3
x + 3CxSxC

3 +C4Sxx = 0

which together with (15) reduce to the simple relations toS andC via differential Gr̈obner
bases [14]

Sxx = 0

St +CSx = 0

Cx = 0

Ct = 0

with the trivial solutions

S = 2c1(x − vt) + 2c0

C = v c0, c1, v = const.

The substitutionχ = ψ/ψx transforms the Riccati system (13), (14) to the linear one

ψxx +
S

2
ψ = 0

ψt +Cψx − Cx
2
ψ = 0.

For c1 6= 0, ψ(x, t) is expressed in terms of the Airy functions [15]

ψ = c2Ai

[
c1(x − vt) + c0

−c2/3
1

]
+ c3Bi

[
c1(x − vt) + c0

−c2/3
1

]
c2, c3 = const.

However, the final solutions are unbounded in this case. While forc1 = 0

ψ = c2 exp

[
k

2
(x − vt)

]
+ c3 exp

[
−k

2
(x − vt)

]
(c0 = −k2/4), and finally we obtain the simplest bounded solutions of the kink-type
(c2/c3 = eϕ) for (10)

ukink(x, t) = k

2

[
1− exp(k(x − vt) + ϕ)

1 + exp(k(x − vt) + ϕ)

]
+
v2 − 1

2v
k, v, ϕ = const. (16)

Their interactions with other waves and with each other are numerically investigated in the
next section.

The singular manifold method can also be applied to perturbed equations to perform
the Painlev́e analysis and perhaps find corrections to non-perturbed solutions [16] (see [17]
as well). In our case, however, the introduction ofεuttxx in (11) dramatically changes the
situation. The first step already (the dominant behaviour) shows that such solutions cannot be
represented by Laurent series as before. This may, for example, indicate the appearance of
essential singularities and therefore require very serious analysis.



4424 A A Alexeyev

4. Computer simulation

In order to investigate the properties of the kinks obtained previously and the evolution of other
nonlinear waves, equation (10) was numerically studied by finite-difference methods. In our
computations, the following implicit scheme:

un+1
i − 2uni + un−1

i

τ 2
− u

n
i+1− 2uni + uni−1

h2
+
uni

τ

(
un+1
i+1 − un+1

i−1

2h
− u

n−1
i+1 − un−1

i−1

2h

)

+2

(
un+1
i − un−1

i

2τ

)(
uni+1− uni−1

2h

)
− 1

2τ

(
un+1
i+1 − 2un+1

i + un+1
i−1

h2
− u

n−1
i+1 − 2un−1

i + un−1
i−1

h2

)
= 0

n = 0, N i = 0, I

(17)

was employed with an appropriate choice of an initial disturbance and the boundary conditions
un0, u

n
I = const. Here, obviously,uni is the mesh function atx = hi andt = τn; h andτ are

the grid spacings.
The difference equation (17) reduces to the set of algebraic equations with a band matrix

which is simple for solving

ani u
n
i−1 + bni u

n
i + cni u

n
i+1 = 0.

The above scheme was found to give the best result among others, both implicit and explicit
ones, with various approximations for the nonlinear addent in (10). (The schemes for (9) were
also considered.) It is of second-order accuracy O(τ 2) + O(h2) and is while very economic,
efficient and simple for realization. And, though it is not absolutely stable (τ < 1.1h is
needed), in practice this does not constitute any difficulties.

In order to verify the real accuracy of the calculations, a number of experiments were
performed with both the test solution (16) and with various time and space intervals. The
results were compared with analytical ones and each other, and the errors are in good agreement
with the theoretical prediction. The rationh = 2τ would be the best choice from many points
of view. Moreover, there is no indication of any numerical instability in those and other
computations because of round-off errors. The errors do not increase with the lapse of time
and remain within the scheme accuracy after a sufficiently long period of time, although we
used up to 10 000 steps in time and points on thex-axis. All computations were made in long
double precision (18 figures).

In what follows some concrete results of the computer modelling are adduced. Most of
them were performed withh = 0.01 andt = 0.005, which gives accurate enough results.

First of all, we investigate the interaction of the kink solution (16) with another localized
wave or kink. In the former case, various situations were considered to examine solitonic
properties for the solution (16). In doing so, we varied both the direction of kink moving
alongx-axis, its wavenumber, and the form and type of perturbation. One of such collisions is
illustrated by figure 1, where the waveforms are presented versus time. The only visible effect
of the kink is the slight phase shift. In opposition to this, in the latter case, the wavenumbers
and velocities of the kinks are also changed after a collision, although in both cases the kinks
always keep their structures, and none of them lose their identity after overlapping. This is
demonstrated in figures 2 and 3, for example. Figure 2 depicts one interesting instance of such
a kink–kink collision. The fact is that, in a general case, the link between the kink parameters
before and after an interaction cannot be determined. However, the problem is simplified in
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 t
 x

Figure 1. Interaction of the kink (k = 2, v = 4.8) with the localized perturbation.

that rather restrictive case. Here, from the boundary conditions and the symmetry we have the
relation

v2
before− 1

vbefore
= v2

after− 1

vafter
.

This enables one to interpret the process as switching from one state to another, which may be
important for some technological applications.

One more circumstance should also be pointed out: the smaller the wavenumber of a kink
generated after an interaction, the larger the time for its final formation; and this time grows
exponentially for small wavenumbers.

The next series of the experiments were devoted to the evolution of wavefronts in the
medium, and the initial data were given by the expression

u(x, 0) = c1
expkx

1 + expkx
+ c0 c0, c1, k = const. (18)

with some initial velocityv = − ∂u
∂t
/ ∂u
∂x

∣∣
t=0

. Here the key observation is that for both fronts
with c1k < 0 and forc1k > 0 there exist three distinct regions ofv separated by the critical
pointsv− andv+. This takes place irrespective of the parameters in (18), althoughv− andv+

depend onc1 andc0. Within each of the regions a scenario is qualitatively the same: the wave
splits into two new ones. Their type depends on the initial perturbation type and the above
region. On the other hand, there are just two types:A — the above kink solution (16) andB
— a quasi-steady structure. At the critical valuesv− andv+, only one wave (and, maybe, some
noise quickly dissipating) forms as a result. All this could be illustrated by the diagrams

wavefront with c1k < 0; v > v+ −→ B +A (a)
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x

t

Figure 2. Kink–kink interaction (k1 = 2.1, v1 = 2.5, k2 = 2.1, v2 = −2.5).

 x

 t

Figure 3. Kink–kink interaction (k1 = 1.7, v1 = 2.5, k2 = 2.5, v2 = −2.5).
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wavefront with c1k < 0; v = v+ −→ A (b)

wavefront with c1k < 0; v− < v < v+ −→ A +A (c)

wavefront with c1k < 0; v = v− −→ A (d)

wavefront with c1k < 0; v < v− −→ A +B (e)

wavefront with c1k > 0; v > v+ −→ A +B (f)

wavefront with c1k > 0; v = v+ −→ B (g)

wavefront with c1k > 0; v− < v < v+ −→ B +B (h)

wavefront with c1k > 0; v = v− −→ B (i)

wavefront with c1k > 0; v < v− −→ B +A. (j)

Some of them are shown in figures 4–7. It is clear that kink–kink formation considered
before (figures 2 and 3) and the kinks themselves could fall into the categories(c) and(b),(d),
respectively.

Finally, it is necessary to note that the wavenumber in (18) has no effect on evolution or,
more precisely, plays a minimal role and only during some short initial period. Instead, the
Heaviside step function could be used without loss of generality.

Accuracy of the above results is high enough. In our calculations the error between the
experimental data and the expression (16) is about 10−4 or 0.01%, this is in full agreement with
the theoretical accuracy of the difference scheme. Figures 8(a)–(c) (see figures 1, 3 (the left
kink) and 4 respectively) depict the difference between the numerical data andukink for every
type of experiment. The availability of the peaks and their non-symmetry for large values of
v/k can also be explained from the theory of difference schemes, namely by the contribution

 t

 A

 B

 x

Figure 4. Evolution of the wavefront withc1k < 0(k = 1.5, v = 4> v+).
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 x

 B

 B

 t

Figure 5. Evolution of the wavefront withc1k > 0(k = 10, v− < v = 0< v+).

x

B

t

Figure 6. Evolution of the wavefront withc1k > 0(k = 10, v = −0.68= v−).
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 A

 x

 B

 t

Figure 7. Evolution of the wavefront withc1k > 0(k = 10, v = −10< v−).

from higher spatial and time derivatives from the residual.
Collapse of a localized disturbance was also considered in our investigation. Such

structures dissipate with time, perhaps after preliminary splitting into several impulses.
Figure 9 exhibits such a situation.

Unfortunately, we have no possibility of verifying the solitonic properties of the above
quasi-steady structure. This appears to be a rather difficult problem for computer modelling
due to its specificity and the computer facility limit.

Our computer simulation has shown that the system under consideration possesses features
similar to the ones of classical soliton models.

(1) It has the kink (solitonic) solutions, which elastically interact with localized disturbances.
(2) The kinks do not lose their identity when interacting with each other.
(3) They can be formed from suitable initial perturbations.

However, this model also drastically differs from them, because here the interaction is of
another nature, and the kinks undergo amplitude (wavenumber) and velocity changes under
mutual interactions. Such a type of interaction is novel for soliton systems, especially for
(1 + 1)-dimensional scalar ones. Indeed, in such models solitons have trivial enough dynamics
and only undergo a phase shift. The situation is more diverse for so-called vector solitons and
(2 + 1)-dimensional cases. For instance, in coupled equations of the nonlinear Schrödinger
family, solitons may alter their polarization (for the latest works see [18]), and two-dimensional
soliton head-on collision can result in 90◦ scattering [19] (Ward solitons). There is one
exception. To be precise, two-dimensional dromions of the Davey–Stewartson I equation
change their amplitude and velocity under collisions [20]. But these are driven by nontrivial
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x

t

x

t

x

t

Figure 8. The differenceuexp− ukink between the experimental data and analytical expression
(16) with somek andv. The broken curve schematically indicates the kink’s profile and position.
(a) See figure 1;k = 2, v = 4.8. (b) See figure 3;k = 3.1422, v = 1.3817. (c) See figure 4;
k = 2.0939, v = 1.6867.

boundary conditions. All these types of interactions, however, fit with the traditional theory of
integrable nonlinear equations, and the equations possess a full range of the related properties,
including the Painlev́e one, in contrast to the above equation.

While the interactions in our model are of a radically different kind from non-integrable
cases as well [21,22] (see also [23]). Alone, such soliton-like solutions can be steady. However,
after a collision with each other or another wave they either simply coalesce and lose their
identity (some structure with complex behaviour arises) or change their form, and various
defects of the envelope appear. Such a process may end with their ultimate collapse. Also, a
number of second effects accompany this, such as emission of noise or new waves of a small
amplitude, generation of smooth or oscillatory tails and so on. As demonstrated before, there
are no signs of such side effects or deformations of the kink form in our cases.

5. Conclusion

Previously we have studied the nonlinear partial differential equation, which could arise in
the theory of bubbly mediums, analytically and numerically and discovered its anomalous
properties. It admits the solitonic solutions of the kink type, and they elastically interact with
localized perturbations in the standard manner for solitons. But their mutual interaction is
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t

x

Figure 9. Dissipation of the localized perturbation.

unusual from the classical viewpoint. The equation does not possess the Painlevé properties
and could be classified as a ‘nonintegrable’ one, though this has not been rigorously proved.
Also, it seems to have no conservation laws besides itself and the following ones:

∂

∂t
[2xu2 + 2(t + 1)u− (t2 + x2)ut ] +

∂

∂x
[(t2 + x2)(ux − 2uut + utx)− 2x(u + ut )] = 0

∂

∂t
(u− tut ) +

∂

∂x
(−2tuut + tux + tutx) = 0

∂

∂t
(u2 − xut ) +

∂

∂x
(xux − 2xuut − u− ut + xutx) = 0.

And its Lie-point symmetries are trivial and correspond just tox- andt-translations.
Besides its importance for the theory of nonlinear equations the model under consideration

may be interesting from the applied viewpoint. Essentially, we have a system with unique
properties for communication systems and elements of digital/analogue computers. On the
one hand, the kinks are stable with respect to localized disturbances (noises), and such signals
can propagate without visible damping for a long period of time. On the other hand, they can be
controlled by another kink, and on this basis a nonlinear amplifier can be designed. In so doing,
the second kink plays the role of a pump pulse or pilot signal. The similar property of switching
from one state to another with different parameters is also interesting from the viewpoint of
arithmetic and logic elements for computers. In this context investigations of similar soliton
equations (in contrast to the nonlinear Schrödinger family traditional for optical and other
mediums using now [24]) may be important for the development of non-semiconductor devices,
e.g. biochips [25, 26], in which the silicon units would be replaced by organic molecules or
genetically engineered proteins [27].



4432 A A Alexeyev

The research was initiated in [28] and was partially presented at the 6th International
Conference on Evolution Equations and their Applications in Physics and Life Sciences, [29].
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